Current Interventional Therapies for Low Back Pain

BDMS Annual Academic Meeting
September 11th, 2016

Matthew Smuck, MD
Chief, Physical Medicine & Rehabilitation
Associate Professor, Orthopaedics
Director, Wearable Health Lab
Stanford University
Introduction

1. Axial Pain (facet origin)

2. Radicular Pain
Outline – Facet pain

Significance

Diagnosis

Brief literature review of treatment options
 - RF
 - Steroids
 - MBB
Facet-Joint Diagnosis

Physical Examination?

- No specific exam maneuvers or collection of maneuvers that can accurately diagnosis z-joint pain

Medical Imaging?

- Imaging abnormalities are ubiquitous after age 60
- Patients can have imaging abnormalities and no pain
- Patient can have no imaging abnormalities and pain
Stated Another Way

There are no patient history items, physical exam maneuvers, or imaging studies that can accurately predict those that have Z-joint mediated pain.
How can we diagnose?

Diagnostic Injections

- Target?
 - Intra-articular injections?
 - Medial Branch Blocks?
- Single Blocks?
- Dual Blocks?
- Dual Comparative Blocks?
Single Block Limitations

Positive Predictive Value
- 63-68%

False Positives
- 32-37%

(Dreyfuss 2000)
Dual Blocks?

Dual positive blocks (reproducible relief regardless of the duration) the sensitivity is greatly enhanced (100%) but at the sacrifice of specificity (65%) as judged against placebo (Lord 1995)
Modified Comparative Blocks

Where two different length anesthetics are used on separate occasions, and ascribing a positive response to each dependent on minimum duration of relief with each agent (i.e. >2 hrs with lidocaine and >3 hrs with marcaine)

Enhance Specificity -88%

(Lord 1995)
Intra-Articular?

Using a unique dual block criteria

- Definite or complete relief with first IA injections, and >50% relief with second block

PPV only 31% with a 69% occurrence of false positive responses

PPV for IA Z-joint blocks is much lower than MBBs

(Schwarzer 1994)
Summary of Optimal Selection

Single Blocks (IA or MBB) are not adequate due to an unacceptable occurrence of FP responses

Ideal minimum selection criteria:

> 80% relief from comparative or modified MBBs
Why does this matter?

Excluding RF, most of the literature does not select patients via validated techniques

Non-Specific In = Non-Specific Out

Back Pain ≠ Back Pain
Unfortunately for Low Back Pain

Trials on:
Physical therapy
Chiropractic
Massage
Oral Medications
Acupuncture

Clearly include subjects with facet pain, but are not exclusive to them.
(Likely 10-50% based on prevalence data)

The results are not overwhelmingly favorable.
Interventional outcomes?

Radiofrequency Neurotomy
Steroids
Radiofrequency

Multiple well done studies (Dreyfuss, MacVicar)

≈60% obtain >80% relief
>80% obtain >50% relief

Duration - at least 6 months
Median duration of effect 17-33 months

When chosen by strict criteria with strict technique
Steroids for Facet-joint Pain?

To Date:
26 Published Reviews in the Literature
7 Published Randomized Controlled Trials

- All with Significant selection flaws that limit usefulness
- or at best single blocks (Carette 1991)
- Results: Variable
Selection via SPECT Scanning?
Utility of positive facet on SPECT

- With objective evidence of active disease facet injections are superior to “therapeutic” medial branch blocks
 - 61% vs 26%
- Predicts successful facet corticosteroid injections
 - 97% (+) vs 45% (-)
- Reduces number of injections & cost while improving outcome
 - 87% (+) vs 31% (none) vs 13% (-)

SPECT

ADVANTAGES:
- Functional interrogation of tissues
 - Distinguish active from inactive degenerative sites
 - Uncover active sites with normal morphology
- Sensitive to bone turnover and inflammation
- Full body survey

DISADVANTAGES:
- Poor spatial resolution
- High radiation

BEST USE:
- Distinguish between soft tissue and bone/joint sources of pain
- Screen for occult injury
- Guide targeted interventions
Selection Via MRI Findings?

Joint Edema or Synovitis

Selection via Joint Edema

FRIEDRICH ET AL.

145 asymptomatic

Only 21 (14%) positive

CZERVIONKE ET AL.
Retrospective study from Mayo Clinic

Overall prevalence of 41%

100% correlation in subjects with unilateral pain and facet synovitis
New Data – Kennedy, Smuck, et al.

28 SUBJECTS WITH DUAL COMPARATIVE MEDIAL BRANCH BLOCK CONFIRMED Z-JOINT PAIN
IA STEROID VS SALINE VIA FLUOROSCOPIC GUIDANCE
PRIMARY OUTCOME – NEED FOR RF
SECONDARY OUTCOMES – CATEGORICAL 50% DECREASE IN PAIN, ODI, SF-36, MEDICATION USE, ETC
FOLLOW-UP 6 WEEKS, 3 MONTHS, 6 MONTHS, AND 1 YEAR
Outcomes

Primary Outcome:
Categorical need for a Radiofrequency (RF) ablation
- IA steroid 70%
- IA saline 76.1%

Secondary Outcomes:
- Mean time to RF 6.1 vs 6.5 weeks
- Pain, ODI, SF-36 not valid
Conclusions

INTRA-ARTICULAR CORTICOSTEROIDS WERE NOT MORE EFFECTIVE THAN SALINE IN REDUCING THE NEED FOR A RADIOFREQUENCY ABLATION OF THE MEDIAL BRANCHES IN THOSE WITH DUAL MEDIAL BRANCH BLOCK CONFIRMED Z-JOINT PAIN

FLAWS:
- Small
- Appropriate placebo?
- Weeded people out by doing “therapeutic” MBB
- Did the patients respond to RF?
In conclusion

Facet Pain

RF = High Quality, Reproducible Research

Steroids = May be valid in select patient populations, but when applied universally not valid

MBB = Great for diagnosis, not for treatment
RADICULAR PAIN

PREDICTING RESPONSE TO STEROIDS
Back Pain ≠ Back Pain ≠ Back Pain

Different Pathologies Have Different:

- Causes
- Natural Histories
- Possibly Treatment Responses
Low Back Pain?

LBP is a SYMPTOM . . .

NOT A DIAGNOSIS
Medicine Example

Cough ≠ Cough

- Bacterial Pneumonia vs
- Viral Pneumonia vs
- Asthma vs
- GERD vs
- CHF

Study: Are antibiotics effective for cough?

- Depends on: accurate inclusion criteria
PREDICTIVE FACTORS

1. WHERE AND HOW STEROIDS ARE GIVEN
PREDICTIVE FACTORS

What about Systemic Steroids?

- **PO**
- **IV/IM**

<table>
<thead>
<tr>
<th>RCTs</th>
<th>Active</th>
<th>Control</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porsman</td>
<td>IM steroid</td>
<td>Placebo</td>
<td>No diff</td>
</tr>
<tr>
<td>Hedeboe</td>
<td>IM steroid</td>
<td>Placebo</td>
<td>No diff</td>
</tr>
<tr>
<td>Naylor</td>
<td>IM steroid</td>
<td>Placebo</td>
<td>No diff</td>
</tr>
<tr>
<td>Friedman</td>
<td>IM steroid</td>
<td>Placebo</td>
<td>No diff</td>
</tr>
<tr>
<td>Ghahreman</td>
<td>IM steroid</td>
<td>Placebo</td>
<td>No diff</td>
</tr>
<tr>
<td>Finckh</td>
<td>IV steroid</td>
<td>Placebo</td>
<td>No diff</td>
</tr>
<tr>
<td>Haimovic</td>
<td>PO steroid</td>
<td>Placebo</td>
<td>No diff</td>
</tr>
</tbody>
</table>

Alternative - EPIDURAL STEROIDS

E V O L U T I O N O F I N J E C T I O N T E C H N I Q U E

PREDICTING RESPONSE – Where given

TRANSFORAMINAL VS INTERLAMINAR

- Retrospective Cohorts
 - Schufele - Pain Physician 2006 (n=40 HNP)
 - TF ESI > Interlaminar ESI
 - Smith - Pain Med 2010 (n=39 – SS only)
 - TF ESI = Interlaminar ESI (stenosis)

- Prospective RCTs
 - Thomas - Clin Rheumatol 2003 (n=31 HNP)
 - TF ESI > Blind interlaminar ESI
 - Kraemer - Eur Spine J 1997 (n=133 HNP)
 - Perineurl > Interlaminar > placebo + IM
 - Lee – Clin J Pain 2009 (n=192 – SS and HNP)
 - TF ESI > Interlaminar ESI (stenosis, not HNP)
 - Gharibo – Pain Physician 2011 (n=38 – Subacute HNP)
 - TF ESI > Interlaminar ESI
 - Rados– Pain Med 2011 (n=64 – Chronic HNP)
 - TF ESI = Interlaminar ESI
 - TF=half dose with longer funct. gain
PREDICTIVE FACTORS

2. **Who they are given to**
WHO THEY ARE GIVEN TO

SUCCESS OF EPIDURAL STEROIDS

- Reported success rates between 50-90%
- Success is 2-3x that of placebo $^1,^2$
- NNT <3

WHO ARE THE NON-RESPONDERS?
WHO ARE THE BEST RESPONDERS?

WHO THEY ARE GIVEN TO

Jen

BRAD

JOHN

L5-S1 EXTRUSION

L4-5 PROTRUSION

L3-4 STENOSIS
WHO THEY ARE GIVEN TO

- Patient variables to predict success?
 - Demographic
 - Anthropomorphic
 - History
 - Exam
 - Radiographic
WHO THEY ARE GIVEN TO

- **Patient variables to predict success?**
 - Demographic
 - Anthropomorphic
 - History
 - Exam
 - Radiographic
WHO THEY ARE GIVEN TO

HISTORY
WHO THEY ARE GIVEN TO

- **History**
 - Symptom duration
 - Evaluated in 3 studies of modern transforaminal injections

Table 3
Successful outcome from transforaminal injection of steroids correlated against duration of symptoms. The P value pertains to a chi-squared test of the data. For each data set, the sensitivity (Sens) and specificity (Spec), and positive likelihood ratio (LR) of short duration of symptoms being a predictor of outcomes are shown, as well as the respective success rates in patients with short duration and long duration of symptoms.

<table>
<thead>
<tr>
<th>Reference Study</th>
<th>Duration (months)</th>
<th>Response</th>
<th>Yes</th>
<th>No</th>
<th>P</th>
<th>Sens</th>
<th>Spec</th>
<th>LR</th>
<th>Success Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeong et al. [40]</td>
<td><6</td>
<td></td>
<td>96</td>
<td>38</td>
<td>0.01</td>
<td>0.67</td>
<td>0.51</td>
<td>1.4</td>
<td>72 ± 8</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td></td>
<td>48</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55 ± 10</td>
</tr>
<tr>
<td>Lee et al. [41]</td>
<td><6</td>
<td></td>
<td>12</td>
<td>2</td>
<td>0.62</td>
<td>0.44</td>
<td>0.67</td>
<td>1.3</td>
<td>85 ± 16</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td></td>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79 ± 18</td>
</tr>
<tr>
<td>Ghahreman et al. [77]</td>
<td><6</td>
<td></td>
<td>26</td>
<td>22</td>
<td>0.52</td>
<td>0.74</td>
<td>0.33</td>
<td>1.1</td>
<td>50 ± 14</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td></td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48 ± 21</td>
</tr>
<tr>
<td>Combined</td>
<td><6</td>
<td></td>
<td>136</td>
<td>62</td>
<td>0.03</td>
<td>0.65</td>
<td>0.47</td>
<td>1.2</td>
<td>89 ± 6</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td></td>
<td>73</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57 ± 9</td>
</tr>
</tbody>
</table>

WHO THEY ARE GIVEN TO

- **HISTORY**
 - Symptom duration
 Associated with outcome in 1/3 studies
 Significant in pooled data

WHO THEY ARE GIVEN TO

HISTORY

- Symptom duration

 Evaluated Success rates are not statistically different

Table 3: Successful outcome from transforaminal injection of steroids correlated against duration of symptoms. The P value pertains to a chi-squared test of the data. For each data set, the sensitivity (Sens) and specificity (Spec), and positive likelihood ratio (LR) of short duration of symptoms being a predictor of outcomes are shown, as well as the respective success rates in patients with short duration and long duration of symptoms.

<table>
<thead>
<tr>
<th>Reference Study</th>
<th>Duration (months)</th>
<th>Response</th>
<th>P</th>
<th>Sens</th>
<th>Spec</th>
<th>LR</th>
<th>Success Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><6</td>
<td>Yes 96</td>
<td>0.01</td>
<td>0.67</td>
<td>0.51</td>
<td>1.4</td>
<td>72 ± 8</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td>No 38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55 ± 10</td>
</tr>
<tr>
<td>Lee et al. [41]</td>
<td><6</td>
<td>Yes 12</td>
<td>0.62</td>
<td>0.44</td>
<td>0.67</td>
<td>1.3</td>
<td>86 ± 16</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td>No 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79 ± 18</td>
</tr>
<tr>
<td>Ghehraman et al. [77]</td>
<td><6</td>
<td>Yes 28</td>
<td>0.52</td>
<td>0.74</td>
<td>0.33</td>
<td>1.1</td>
<td>59 ± 14</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td>No 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48 ± 21</td>
</tr>
<tr>
<td>Combined</td>
<td><6</td>
<td>Yes 136</td>
<td>0.03</td>
<td>0.85</td>
<td>0.47</td>
<td>1.2</td>
<td>89 ± 6</td>
</tr>
<tr>
<td></td>
<td>>6</td>
<td>No 73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57 ± 9</td>
</tr>
</tbody>
</table>

WHO THEY ARE GIVEN TO

EXAM
WHO THEY ARE GIVEN TO

+ EXAM

Physical Exam

<table>
<thead>
<tr>
<th>Table 3 Contingency table for presence of neurologic features and response to transforaminal injection of steroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurologic Feature</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sensory change</td>
</tr>
<tr>
<td>Present</td>
</tr>
<tr>
<td>Absent</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Neurologic sign</td>
</tr>
<tr>
<td>Present</td>
</tr>
<tr>
<td>Absent</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

WHO THEY ARE GIVEN TO

EXAM

Positive electrodiagnostic exam
- Improved functional outcome
- Improved pain
- No influence

WHO THEY ARE GIVEN TO

RADIOLOGY
WHO THEY ARE GIVEN TO

- **Radiology**

Spinal Stenosis < Disc Herniation
WHO THEY ARE GIVEN TO

RADIOLOGY

- Disc morphology (size & shape)
 - Large extrusion & sequestrations ²,³
 - Small protrusions ⁴

WHO THEY ARE GIVEN TO

- **RADIOLOGY**
 - Nerve Compression Grade

WHO THEY ARE GIVEN TO

Radiology

- Nerve compression grade

Table 4 The correlation between response to transforaminal injection of steroids and the grade of nerve compression

<table>
<thead>
<tr>
<th>Reference Study</th>
<th>Grade</th>
<th>Yes</th>
<th>No</th>
<th>Sens</th>
<th>Spec</th>
<th>LR</th>
<th>Success Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi et al. [59]</td>
<td>Low</td>
<td>44</td>
<td>13</td>
<td>0.86</td>
<td>0.52</td>
<td>1.8</td>
<td>77 ± 11</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>7</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>33 ± 20</td>
</tr>
<tr>
<td>Ghahreman et al. [100]</td>
<td>Low</td>
<td>30</td>
<td>10</td>
<td>0.79</td>
<td>0.70</td>
<td>2.6</td>
<td>75 ± 13</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>8</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>26 ± 15</td>
</tr>
</tbody>
</table>

Table 8 Contingency table for response to transforaminal injection of steroids and grade of compression of the nerve root affected

<table>
<thead>
<tr>
<th>Grade of Nerve Root Compression</th>
<th>Response to Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracentral herniations</td>
<td></td>
</tr>
<tr>
<td>Grade I</td>
<td>13</td>
</tr>
<tr>
<td>Grade II</td>
<td>12</td>
</tr>
<tr>
<td>Grade III</td>
<td>4</td>
</tr>
<tr>
<td>Grade IV</td>
<td>3</td>
</tr>
<tr>
<td>Low-grade (I, II)</td>
<td>25</td>
</tr>
<tr>
<td>High-grade (III, IV)</td>
<td>7</td>
</tr>
</tbody>
</table>

Foraminal herniations		
Grade I	5	1
Grade II	1	0
Grade III	0	3
Low-grade (0, I)	5	1
High-grade (II, III)	1	3

Combined		
Low-grade	30	10
High-grade	8	23

FUTURE POSSIBILITIES

WHO TO INJECT?

- Patients with lumbar HNP and radiculopathy
 - Specific biomarkers predict response to ESI and surgery. ¹,²,³

Response to ESI correlated to improvement (P<0.001)

<table>
<thead>
<tr>
<th>Fibronectin–aggrecan complex present</th>
<th>Responders to Injection</th>
<th>Nonresponders to Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

| Fibronectin–aggrecan complex absent | 1 | 11 |

Figure 3. Receiver-operating-characteristic (ROC) curve for the two-by-two contingency table comparing the presence of the fibronectin-aggrecan complex to PCS s core. The y-axis is the sensitivity and the x-axis is the specificity (also known as the false-positive rate). The curve is generated by allowing the cutoff value of PCS s core to vary. ROC analysis is a graphical representation of the tradeoff between sensitivity and specificity inherent in any test. Here, the tradeoff is controlled by choosing a cutoff value for PCS. The difference between the ROC curve and the null hypothesis curve is highly significant (P < 0.001), indicating an effective test.

Wearable Health Lab

Faculty and Staff
- Matthew Smuck, MD (Director)
- Christy Tomkins-Lane, PhD
- Agnes Martinez-Ith
- Ming-Chi Kao, MD, PhD

Students & Post-Docs
- Justin Norden
- Aman Sinha
- Vibhu Agarwal
- Amir Muaremi, PhD
- Patricia Zheng, MD

Collaborations with:
- William Haskell, PhD (Stanford Prevention Center)
- Andy Haig, MD (University of Michigan)
- Scott Delp, PhD (Stanford Mobilize Center)

Supported by: NIH U54EB020405 Stanford Mobilize Center
FUTURE POSSIBILITIES
Center for Medical Mobile Technology

PROFILES OF PHYSICAL PERFORMANCE (PoPP)
LUMBAR SPINAL STENOSIS DECOMPRESSION NORMALIZES OBJECTIVE MEASURES OF PHYSICAL PERFORMANCE

SUBJECTIVE MEASURES:
Significant differences persisted in all self-reported measures (except the SF-36 physical function and bodily pain subscales).

OBJECTIVE MEASURES:
Differences normalized in the SPWT (time and speed) and accelerometry thresholds.
WHO BENEFITS THE MOST?

Jen Brad John

L5-S1 EXTRUSION L4-5 PROTRUSION L3-4 STENOSIS
WHO BENEFITS THE MOST?

JEN WINS

L3-4 STENOSIS

L5-S1 EXTRUSION

L4-5 PROTRUSION
Thank You!

Matthew Smuck, MD
Chief, Physical Medicine & Rehabilitation
Associate Professor, Orthopaedics
Director, Wearable Health Lab
Stanford University